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Abstract

We present a simple yet elegant feature, RelCom, and a
boosted selection method to achieve a very low complexity
object detector. We generate combinations of low-level fea-
ture coefficients and apply relational operators such as mar-
gin based similarity rule over each possible pair of these
combinations to construct a proposition space. From this
space we define combinatorial functions of Boolean oper-
ators to form complex hypotheses that model any logical
proposition. In case these coefficients are associated with
the pixel coordinates, they encapsulate higher order spatial
structure within the object window. Our results on bench-
mark datasets prove that the boosted RelCom features can
match the performance of HOG features on SVM-RBF while
providing 5× speed up and significantly outperform SVM-
linear while reducing the false alarm rate 5×∼20×. In
case of intensity features the improvement in false alarm
rate over SVM-RBF is 14× with a 128× speed up. We also
demonstrate that RelCom based on pixel features is very
suitable and efficient for small object detection tasks.

1. Introduction
Small object detection still remains one of the most fun-

damental and challenging tasks in computer vision. On the
core, it requires salient region descriptors that can accu-
rately model object appearance and competent classifiers
that can distinguish the large pool of object appearances
from every possible background and clutter. Detection in
infrared images is especially challenging due to the low spa-
tial resolution of the object region. Variable thermal sig-
natures, movable parts, combined with external illumina-
tion and pose variations, contribute to the complexity of the
problem. Since detectors often form the first stage of the
consecutive tracking and recognition tasks it is vitally im-
portant the detector be both accurate and fast.

∗This work was completed when the author was an intern at MERL
and supported in part by the U.S. Army Research Laboratory and the U.S.
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Typically, the entire input image is scanned by a small
moving window to compute the corresponding features and
evaluating a learned classifier of the object model for each
window. Haar wavelets have become popular due to their
efficient computation [19]. More recently, histogram-based
representations of image gradients in spatial context, in-
cluding the histogram of oriented gradients (HOG) [6], the
scale-invariant feature transform [14], shape context [1],
were shown to yield more distinctive descriptors. In [21]
a region was represented by the covariance matrix of im-
age attributes in addition to histograms. The list of com-
mon descriptors can be extended to Gabor filters, appear-
ance templates, local binary patterns, etc. The explosion of
available features has led to the application of data mining
approaches [7, 24] for feature selection.

One recent trend in detection algorithms is the assem-
bling of object parts according to spatial relationships in
probabilistic frameworks [9], by generative [16] and dis-
criminative models [18], or via matching shapes [2]. Part
based approaches are in general more robust towards par-
tial occlusions; however, they can only detect sufficiently
large objects. Most leading holistic approaches are clas-
sifier methods including k-nearest neighbors, neural net-
works (NN), support vector machines (SVM), and boosting.
Even though boosting enables correlating each weak classi-
fier with a single region in the detection window, it does
not encapsulate pair-wise and group-wise relations between
two or more regions in the window, which would establish
a stronger spatial structure.

Initial attempts to capture such relations can be dated
back to the n-tuple concept proposed Beldose and Brown-
ing in 1959 [3]. The term n-tuple refers to an ordered set
of n pixel index values corresponding to distinct pixels on
the image plane. Here the feature characterized is the in-
tensity values of the pixels. Earlier explanations regarded it
as a simple perceptron in a multilayer neural network [15]
and random forest of tree classifiers [13]. However, these
approaches strictly make use of the intensity (or binary) val-
ues and do not encode the comparative relation between
the pixels. More recently, the sparse feature concept has
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Figure 1. RelCom: After a number of coefficients are selected
from the input image (or feature vector), a set of relational oper-
ators are imposed to generate a discrete proposition space, from
which hypotheses are constructed by applying combinations of
Boolean operators (conjunction, disjunction, etc.).

reemerged in the form of a finite number of quadrangu-
lar features called granules [11, 20, 8]. In such a granu-
lar space, a sparse feature is represented as a linear com-
bination of several weighted granules. These features have
certain advantages over Haar wavelets; they are highly scal-
able, do not require multiple memory accesses, and they
partition the feature space into finer granularity [23]. How-
ever, each sparse and associated pairing comparison feature
is either directly encoded into a scalar term almost like Haar
wavelets, or requires both color and gradient attributes, or
is defined only between a pair of granule sets.

Many of the existing works [12, 17] on infrared data,
on the other hand, depend on simple, pixel level morpho-
logical operators and suppression of background clutter for
detection of small targets. In [4] a set of range gate features
is computed for vehicle detection. In [25] it is shown that
feature descriptors developed primarily for visible spectrum
can be adopted in infrared in the case of larger targets like
pedestrians.

All of the above representations, irrespective of their
complexity, are undeniably based on pixel values of the
image. This leads us to explore the possibility of extend-
ing the sparse pixel features known as n-tuples into more
competent forms for detection tasks. Here we introduce the
relational combinatorics features RelCom. We first gener-
ate combinations of low-level attribute coefficients, which
may directly correspond to pixel coordinates in the target
window or feature vector coefficients representing the win-
dow itself, up to a prescribed size n (pairs, triplets, quadru-
ples, etc). We then apply relational operators such as mar-
gin based similarity rule over each possible pair of these
operands. The space of relations constitutes a proposition
space that divides the original feature space into discrete re-
gions. From this space we define combinatorial functions of
Boolean operators to form complex hypotheses as shown in
Fig. 1. Therefore, we can produce any relational rule over
the operands, in other words, any logical proposition over
the low-level descriptor coefficients. In case these coeffi-
cients are associated with pixel coordinates, we encapsulate
higher order spatial structure information within the object
window. Using a descriptor vector instead of pixel values,

we effectively impose feature selection without any com-
putationally prohibitive basis transformations such as PCA.
In addition to proposing a simple methodology to encode
the relations between n pixels on an image (or n vector co-
efficients), we employ boosting to iteratively select a set of
weak classifiers from these relations to perform faster target
detection.

RelCom is significantly different from the body of work
developed around n-tuples, as we explicitly use logical op-
erators with a learned similarity threshold as opposed to raw
intensity (or gradient) values. Unlike the sparse features
and associated pairings, it extends the combinations of the
low-level attributes to multiples of operands to gain better
object structure imposition on the classifier. Instead of min-
ing compositional features [24], which can split the feature
space only along the dimensions as k-trees, RelCom parti-
tions the space into margin regions along the hyperplanes
and constructs higher level hypotheses, thus, it can provide
much better granularity using the same number of primitive
classification rules.

2. RelCom Features

Consider a dataset DN = {xt, ct}Nt=1 with N training
samples where each sample is characterized by its feature
vector xt ∈ Rd and has an associated binary class label
ct ∈ {−1, 1}. The traditional classification problem is to
find a classifier function g(.) : x → c that provides a map-
ping between the feature space and class labels. g(.) is usu-
ally determined by minimizing the classification error over
a representative training set. Instead of a direct mapping
from the feature space to class labels, we define a binary
valued propositional feature space {f1, f2, · · · , fK} where
each fk : x → {0, 1}. In effect this is a transformation
from the continuous valued scalar space to a binary valued
space and possibly a reduction in dimension if K < d. The
mapping function fk can take on a multitude of forms such
as a simple decision stump in a single dimension, a multi-
dimensional hyperplane, a threshold based match filter etc.
For any given classification problem there are a plethora
of possible feature representations of the objects involved.
Therefore, the choice of fk will be dependent on the seman-
tic meaning of the features x and the problem at hand.

After obtaining the K-bit binary string F =
{f1, f2, · · · , fK} by choosing an appropriate mapping
function, it is easy to see that there are 22

K

possible ways
to assign binary class labels to any given test sample x. An
example for the case of K = 3 is shown in Tab.1 where the
left column represents all possible binary string patterns
and each hypothesis column hi(F) on the right represents
one possible class label assignment pattern. Though the
number of possible hypothesis increases greatly with K
we have found in our experiments K = 2, 3 was adequate
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to meet the detection challenge. The value of hi indicate
whether a sample is classified as positive (1) or negative
(-1) for a given propositional binary pattern.

f1 f2 f3 h1(F)h2(F)h3(F)· · ·hi(F)· · ·h256(F)
0 0 0 -1 -1 -1 · · · 1 · · · 1
0 0 1 -1 -1 -1 · · · 1 · · · 1
0 1 0 -1 -1 -1 · · · 1 · · · 1
0 1 1 -1 -1 -1 · · · -1 · · · 1
1 0 0 -1 -1 -1 · · · -1 · · · 1
1 0 1 -1 -1 -1 · · · 1 · · · 1
1 1 0 -1 -1 1 · · · -1 · · · 1
1 1 1 -1 1 -1 · · · 1 · · · 1

Table 1. Illustration of the 22K possible class label assignments
for a propositional binary string of length K = 3.

Figure 2. Illustrative mapping from feature space to the proposi-
tional space spanned by a 3-bit binary string. The dotted lines
represent decision stumps. Data points that lie on the positive nor-
mal side (represented by dark arrows) of a decision stump map to
a binary 1 in the propositional space.

Figure 3. Illustration of possible complex decision boundaries us-
ing combinatorial features. Data points that lie in the shaded re-
gions are classified as positives. Propositional mapping using Top:
simple decision stumps and Bottom: margin based similarity rule.

To illustrate further the concept of combinatorial fea-
tures consider a d dimensional feature descriptor x =
[x(1) x(2) · · · x(d)]T and an associated 3-bit proposi-
tional mapping {f1, f2, f3} using simple decision stumps.
Fig.2 represents a hypothetical projection of these decision
stumps along the first two dimensions of the feature space.

We observe that the entire feature space has been divided
into a small number of discrete region each with a binary
string label. Fig.3 represents the decision boundaries cor-
responding to a few possible hypothesis from Tab.1 where
data samples falling within the shaded region are classified
as positives. It is observed that simple logical operations in
the propositional space form complex decision boundaries
in the original feature space. Thus we can define complex
decision boundaries by combining the results of individ-
ual simple decision stumps in a multitude of combinations.
From Fig.3 it is easy to perceive that the decision regions
resulting from the combinations are more likely to be ben-
eficial in classification problems than those of any individ-
ual decision stumps. However, the regions of the individual
decision stumps are a subset of the larger set of all possi-
ble combinations. Though combinational features allow for
complex decision boundaries we still consider each of these
to be a weak classifier and perform boosting to select an
informative subset from these combinations.

Some of the hypotheses in Tab.1 are degenerate and are
logically invalid such as the first and last columns. Half of
the remaining are complements of a different column and
need not be evaluated explicitly. Based on the definition of
fk it is possible that some of the patterns in the left column
never occur and this further reduces the number hypothesis
to be evaluated. An example of this is seen in Fig.2 where
the string 100 is not a possibility. Thus, when we search
within the hypotheses it is not necessary to evaluate all of
22

K

possibilities.
Fast target detection invariably requires the computa-

tional load imposed by features and the propositional map-
ping to be minimized. In this paper we primarily consider
the simplest possible feature - raw image pixel values. The
feature vector x is taken to be a raster scan of the pixel val-
ues making its dimension d equal to the number of the pix-
els in the target window. Experiments with other feature
descriptors computed in a target window, e.g. HOG feature
are also considered.

Inspired by the n-tuple classifier and other recent works
[11, 8] that capture pairwise feature variations in a small
subset of the entire feature space, we define our proposi-
tional mapping function to be a simple margin based sim-
ilarity rule that operates on two feature dimensions chosen
from a set of n randomly sampled feature dimensions. For
a given d dimensional feature vector x, we randomly se-
lect n, (n < d), of the possible dimensions and represent
it by Pn = {p1, p2, · · · , pn} where each pk is unique and
pk ∈ {1, 2, · · · , d}. Given an arbitrary n-tuple Pn, for each
unique pair (pi, pj), pi, pj ∈ Pn we can define a proposi-
tional mapping fk of the form

fk(x) =

{
1 |x(pi)− x(pj)| ≤ τk
0 otherwise,

(1)
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where x(pi) represents the value of the feature along the
pi’th dimension. The margin value τk indicates the ac-
ceptable level of variation and it can be chosen so as to
maximize the classification performance of a particular hy-
potheses if prior knowledge of the feature space is available.
Given an n-tuple and the definition in Eq.1 the number of
unique propositional mappings fk, k ∈ {1, · · · ,K} that
can be defined is limited to K =

(
n
2

)
corresponding to the

number of possible unique pairs (pi, pj). We denote the re-
sulting binary string by F(x) = {f1, · · · , fK}.

When the propositional mapping in Eq.1 is applied to
raw image pixel values with n-tuples, we are effectively an-
alyzing the intensity variation patterns over the windowed
image region n pixels at a time. This draws attention to
the extremely large number of n-tuples that can be se-
lected for any given image window vector of dimension d,
Tn = d!/(d− n)!. In this work we mostly deal with the
cases of n = 2, 3 which we refer to as ‘doublet’ and ‘triplet’
respectively. For the case of even a 10×10 template and
triplets there exists≈970k unique choices of triplets. A sec-
ond point of concern is the selection of K different thresh-
old τk, a continuous variable, that is difficult to optimize
without prior knowledge of the feature space. The vastness
of this parameter space comprising of n-tuples and thresh-
olds makes determining optimal values for either of them
impossible. However, each n-tuple, threshold pair can be
thought of as a weak classifier and these can be combined
by boosting to produce a strong classifier. Since we explore
different sparse combinations of the feature space using re-
lational operators we refer to our feature as ‘RelCom’.

2.1. Boosting

To select the most discriminative RelCom features from
a large pool of candidates we use the discrete AdaBoost al-
gorithm [10]. Since the output of each RelCom hypothesis
is binary it can easily be adapted into the discrete AdaBoost
framework. AdaBoost works iteratively to combine a num-
ber of weak classifiers linearly to produce a strong classifier
with acceptable classification performance. In each itera-
tion a single weak classifier is selected from a pool such that
it minimizes the weighted error over the training set. The
weights of the misclassified samples are increased (and the
weights of each correctly classified example are decreased),
so that in the next iteration the new weak classifier focuses
more on the misclassified examples. It has been shown [10]
that for a binary classification problem the error of the fi-
nal hypothesis decreases exponentially with the number of
boosting rounds (i.e additional weak classifier).

Our adaptation of the discrete AdaBoost for RelCom fea-
tures (shown in Fig. 4) is similar to original AdaBoost, ex-
cept differences at the level of weak learners. In this case,
domain of the weak learners is in the combinatorial n-tuple
hypotheses and threshold space. In each iteration random

Given:
∗ Training dataset with feature vectors, class labels
D : {(x1, c1), · · · , (xN , cN )}, where ct = ±1 indicates
the class label.
∗ Nc the required number of weak classifiers.
∗ S weak classifiers pool size.
Initialize:
∗ Sample weights W1(t) =

1
2N+ ,

1
2N− for ct = 1,−1 re-

spectively, where N+ and N− are the number of positive
and negative samples.
AdaBoost:
∗ For i = 1, · · · , Nc

• Randomly sample S n-tuples P 1
n , · · · , PSn . For each

P sn also sample threshold values T s = {τsk}, k =
{1, · · · ,

(
n
2

)
}.

• For each of the S n-tuples compute the propositional
mapping Ft1,F

t
2, · · · ,FtS over the training samples

t = {1, · · · , N} using Eq.1.

• For each of the S n-tuples compute error for all valid
hypothesis in the set hj(F) j = {1, · · · , 22

K} as
λjs =

∑N
t=1Wi(t)[ct 6= hj(F

t
s)].

• Set P isel,n = P sminn , T i
sel = T smin,

hisel(F)=hjmin(F) and εi = λjminsmin. Where smin
and jmin are indices : λjminsmin < λjs ∀s 6= smin, j 6=
jmin.

• Calculate αi = 1
2 · ln

[
1−εi
εi

]
.

• Update the sample weights for t = {1, · · · , N}
Wi+1(t) =Wi(t) exp[−αicthisel(Ftsmin)].

• Normalize the weights
∑N
t=1Wi+1(t) = 1.

Output:
∗ Selected n-tuples P isel,n, threshold T i

sel, hypothesis
hisel and classifier weight αi for i = {1, · · · , Nc}.

Figure 4. Training RelCom features with discrete AdaBoost.

Given:
∗ A single sample feature vector xtest
∗ RelCom classifier consisting P isel,n, T i

sel, h
i
sel and αi

for i = {1, · · · , Nc}
Testing:
∗ Identify F1,F2, · · · ,FNc

using xtest,P isel,n and T i
sel.

∗ final classifier H(xtest) =sign [
∑Nc

i=1 αih
i
sel(Fi)].

Figure 5. Testing with RelCom features.

samples of a set of n-tuples P sn and associated thresholds
T s are drawn for more efficient spanning of the enormous
search space. These define the mapping from the input fea-
ture space xt to the propositional space Fts(xt). Next we
identify the n-tuple pattern, associated threshold and the hy-
pothesis pattern that minimizes the weighted error on the
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training set and update the training sample weights. The
identified patterns, threshold and hypothesis are added to
the classifier pool with associated weight αi. Once trained,
given a test feature vector, the propositional mapping can
be identified from a lookup table as we use a margin based
similarity rule. The hypothesis corresponding to the propo-
sitional binary pattern is pre-stored in a second lookup table
and also requires no computation. The output of the strong
classifier is the sign of the sum of the weighted RelCom
feature responses as shown in Fig. 5.

Figure 6. Top ten RelCom triplet feature locations shown on the
mean positive images for (a) CSUAV, (b) SENSIAC night time and
(c) SENSIAC day time datasets. The features identified compare
the object with its background aiming to distinguish the silhouette.

Figure 7. Map of normalized weighted location of RelCom fea-
tures for the SENSIAC dataset. Top: Night time and Bottom: Day
time. The target edges, as expected, are found to be more salient
by RelCom features.

To illustrate the competence of the boosted RelCom fea-
tures, we analyze the classifier learnt for detection on two
infrared datasets 1)CSUAV (civilian vehicles from aerial
view) and 2) SENSIAC (military targets from planar view)
using raw pixel values as the feature vector. Figure 6 shows
the position of the top 10 RelCom features for the case of
triplets. Interestingly, the features are distributed on the tar-
get and background to gather clues about the target shape.
Figure 7 presents the map of the weighted locations of the
RelCom features on the SENSIAC dataset when the number
of weak learners is varied. As indicated by brighter inten-
sity, many of the selected features are concentrated along
the target edges as they are more discriminative. Increasing
the number of features helps to concentrate attention on the
salient regions of the target especially in the night time im-
ages. For the day time images the effect is less pronounced
due to the presence of considerable clutter.

Algortihm Computational INRIA
complexity ∼ Operations % of FA

SVM-Linear 10d 21,000 4.58
SVM-RBF 13dNsv + 47Nsv 20,700,000 0.38
RelCom Doublet 12Nc 18000 0.22
RelCom Triplet - 1 16Nc 8000 0.23
RelCom Triplet - 2 16Nc 160,000 0.02

Table 2. Computational complexity and performance of different
algorithms given a input vector of dimension d, the number of:
learnt support vectors Nsv and weak classifiers Nc. The rela-
tive costs of processor operations are measured against the cost of
memory access taken to be unity. The above expressions assume
the cost of an addition to be 3, multiplication to be 5 and an ex-
ponential to be 35. For the INRIA dataset using 64 × 32 intensity
images, d = 2048 and Nsv = 776. We set Nc = 1500, 500, 10k
weak learners for the RelCom doublet, triplet-1 and triplet-2 re-
spectively.

2.2. Computational Load

Note that the operator used to map from the feature space
to propositional space has a simple margin based distance
form. Therefore, it is possible to construct a 2D lookup ta-
ble to determine the propositional binary string given the
n-tuples. This can be achieved without loss of information
for intensity features, and an insignificant adaptive quan-
tization loss for other low-level features. Particularly, this
lets us masterfully trade in the computational load with the
memory imprint of the algorithm, which itself is relatively
small (as many 100×100 or 256×256 binary tables as the
number of features). In case of 500 triplets, the memory
for the lookup tables is approximately 100MB. After ob-
taining the propositional binary string a secondary lookup
table of the hypothesis is used to identify the binary class
label. We can then multiply these labels with their corre-
sponding weak classifiers’ weights and aggregate the sum to
determine the response. In other words, in the testing stage
we only need to employ array access operations instead of
complex arithmetic operations, which results in a very fast
detector. Due to vector multiplications, neither SVM ra-
dial basis functions nor linear kernels can be implemented
in such a manner.

The computational load and the performance of sev-
eral classifiers including the boosted RelCom doublet and
triplets are compared in Table 2. As shown, RelCom boost-
ing provides one of the fastest classifiers whose complexity
only depends on the number of weak classifiers even with-
out a cascade implementation. It easily outperforms SVM-
RBF and requires only a fraction of the load (∼128× speed
up for the INRIA dataset).

Further, in the context of boosted classifiers it is possible
to implement a rejection cascade that significantly reduces
the computational load in scanning window based detec-
tion. As an example, for Haar wavelet based face detection
the classifier becomes 750× faster [22] by decreasing the
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effective number of features to be tested from 6000 (in the
original boosted strong classifier) to a mere 8 on average! In
other words, a cascade implementation of boosted RelCom
has every potential to further speed up detection.

3. Experiments
To demonstrate the capability of the proposed RelCom

features, detection is performed on three different datasets.
1) INRIA person1 dataset - human detection in visual im-
ages, 2) SENSIAC ATR2 dataset - military vehicle detec-
tion in midwave infrared (MWIR) images and 3) CSUAV3

dataset- car detection in MWIR images taken from an UAV.
We compare the performance of three different algorithms
including SVM-Linear, SVM-RBF and RelCom triplets.
The SVM parameters were set to maximize cross valida-
tion accuracy on the training set. LibSVM toolbox [5] was
used for training and testing. The basis of comparison are
the ROC curves that plot the probability of true detection vs
probability of false alarms and visual detection results.

From the standard INRIA dataset we obtained 2416 pic-
tures of mirrored and centered images and a further 12180
samples of random backgrounds. Of these only a fifth of
the positive samples and a tenth of the negative samples
were used for training. For testing purposes 24360 ran-
dom background images and 1126 positives we used. All
images were of size 32 × 64. We tested the algorithm per-
formance for two different feature types: greyscale intensity
values and HOG features. For HOG feature calculation, we
used a [-1 1] filter in orthogonal directions and adopted in-
tegral histograms for fast evaluation. HOG features were
computed for 8 directions in non-overlapping blocks of size
16 × 8 resulting in a 8 × 4 × 4 = 128 dimensional feature
vector.

(a) (b)
Figure 8. Comparative ROC curves for INRIA dataset (a) pixel
intensity features (b) HOG features.

Figure 8(a) shows the detection performance curves for
INRIA dataset when using intensity features. The boosted
RelCom triplets with 10k classifiers significantly outper-
forms SVM-RBF to our surprise by a factor of 13.8 at
the 50% true detection level. At the same time it outper-

1http://pascal.inrialpes.fr/data/human/
2https://www.sensiac.org/external/index.jsf
3https://www.sdms.afrl.af.mil/datasets/csuav/

forms SVM-Linear by almost a factor of 25. Figure 8(b)
presents the ROC curves in the case the HOG feature.
Performance of the RelCom is at par with the SVM-RBF
and 12 times better than the SVM-Linear. We are able to
achieve performance comparable to SVM-RBF at signifi-
cantly lower computational cost. This illustrates that the
proposed method is applicable to any given feature and not
limited to intensity features.

The SENSIAC dataset consists of MWIR sequences ac-
quired both during day and night times for eight different
targets. The targets are imaged at multiple distances and
poses. We select 3 of those targets (Pickup, BTR70 and
BRDM2) at a distance of 2000 meters to create a training
set of 60 positive samples, 5900 negative samples and the
testing set consisted of 200 positive samples, 45800 neg-
ative samples each for day and night time images. The
images were histogram equalized before extracting sample
templates of size 15×45. We train two separate classifiers
for day and night time data on greylevel intensity features.
The ROC performance curves are shown in Fig.9 for both
day and night time detection. For the night time data the
performance of all the algorithms is very similar as the tar-
get is distinctly visible. The advantage of RelCom features
is clearly emphasized in the day time images where is sig-
nificantly outperforms SVM-RBF even in the presence of
significant background clutter. In addition results of detec-
tion in three different scenarios are shown in Fig.10, Fig.11
and Fig.12. In a given image, detection is performed by
scanning over the entire image with a small target window.
Each windowed region is passed as input to the RelCom
classifier which quickly identifies it as either target or clut-
ter. Note that in each scenario either the target or the imag-
ing distance is previously unseen (not present in training
set). The boosted RelCom classifier is able to clearly detect
the target even when other methods fail entirely or result in
excessive false alarms.

(a) (b)
Figure 9. ROC curves for SENSIAC dataset (a) Night (b) Day.

The CSUAV dataset contains MWIR images acquired
from an UAV flying over a civilian locality. From this
dataset we selected 1050 positive and 13000 negative sam-
ples for training. For testing purposes 1050 postives and
65000 negatives were used. The template size was 20×30.
Here again it was found that the RelCom triplet greatly out-
performs the SVMs in detection performance. Fig 13 shows
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(a) (b) (c)
Figure 10. Sample detection results at FA rate of 10−4 on Day time SENSIAC data at Distance:1500m (unseen) and Target: BRDM2 (seen)
for (a) SVM-Linear (b) SVM-RBF and (c) RelCom triplet.

(a) (b) (c)
Figure 11. Sample detection results at FA rate of 10−4 on Day time SENSIAC data at Distance:2000m (seen) and Target: ZSU23 (unseen)
for (a) SVM-Linear (b) SVM-RBF and (c) RelCom triplet.

the result of using RelCom triplets in three different scenar-
ios. Since we trained the classifier with a general template
irrespective of orientation, during the detection phase the
image was scanned for targets at orientations of 0o, 45o and
90o to detect targets oriented along different directions. The
detection results were then combined using non-maximum
suppression. We see that majority of the vehicles includ-
ing those in shade and near trees where correctly detected
even though some roof tops were falsely detected. These
experiments establish the competence of the RelCom de-
tector for small target detection using intensity features in
infrared images.

4. Conclusion and Future Work
We show that high-level combinations of basic relational

features can be used in a boosting framework to construct
very fast classifiers that are as competitive as SVM-RBF
while requiring only a fraction of the computational load.
To summarize the advantages of our method:

• RelCom can speed up detection several orders of mag-
nitude because it does not require any complex com-
putations thanks to the two-layer lookup tables.
• It can accommodate both basic features including pixel

intensities and other complex descriptor vectors com-

puted within the object window.

• It utilizes simple relational operators to capture the
spatial structure within the object window effectively.

• It can be applied to very small object windows unlike
HOG features.

As future work, we will improve the feature selection us-
ing more sophisticated feature mining strategies [7] in addi-
tion to the sampling approach we adopted in AdaBoost. A
second improvement will be in the form of a rejection cas-
cade classifier to further speed up detection and extension
to multi-class classification.
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